Three-Box Model Safety Programme Script

Click	Comments
	The FAA's "Safety Programme" is the AVSSMS. The core of our program is the
	relationship between an operator or other service provider's safety management
	responsibilities and practices and the safety assurance efforts of the FAA's oversight
	systems. SMS principles will allow these to work more effectively together.
1	Dr. James Reason described two principal functions – production and protection.
2	First, we have productive functions – the reason for the existence of the business – to
	provide a useful service of product
3	to users in the public domain.
4	Then, we have protection. Here, it's important to mention that we are <i>NOT</i> implying
	different organizations for these functions. Line management, the management chain
	from the top through the managers who oversee operational functions have both sets of
	functional responsibilities production (supplying products and services) and protection
	(providing them safely).
5	The FAA's contribution to public safety at this level is through the agency's oversight
	systems.
6	Traditionally, this has been through extensive direct observation and intervention
7	largely through surveillance. Here, we should note that the FAA still intends to
	conduct surveillance but we believe that its focus in supporting safety assurance versus
	"quality control" will change. This is the essential concept of system safety.
8	ATOS adds a management system to oversight – the "eight modules" of ATOS and
9	106 elements of air carrier system requirements. These elements organize regulatory
	requirements into a systematic structure. Work is presently on-going to define a more
	process-based set of systems that interface more effectively with other air carrier safety
	assurance systems (e.g. IOSA), while still allowing for assessment of regulatory
10	compliance.
10	ATOS 1.2 organizes the oversight management system into two sets of modules –
	Design Assessment (DA) and Performance Assessment (PA) (we'll see how these work
	together with the SRM and SA processes that we discussed earlier).
	At this point we've cone as for as we can so with oversight Deal sofety management
	At this point, we ve gone as fai as we can go with oversight. Real safety management
11	Thus we add the SMS
11	consisting primarily of the two functional processes of SPM (Design) and SA
12	(Derformance) that we discussed earlier. These are supported by the policy and
	promotional components of the SMS
	promotional components of the SWIS.
	At this point, we have a systems-based oversight system and a structured SMS for
	operators. However, the overall safety program isn't nearly as efficient if these
	processes work in isolation as if they are effectively interfaced.
13	SRM, a design function, will work closely in conjunction with the design assessment
	function of the oversight system
14	where certification and program approval/acceptance decisions are made based on
	exchange of information on system design rather than having focusing on the

Click	Comments
	administrative elements of certification and approval.
15	Likewise, the operator's safety assurance functions and the FAA's performance
	assessment processes will work to assure ¹ (gain confidence)
16	in the Continuing Operational Safety (C.O.S.) of operational systems. As shown
	earlier, where systems are not meeting expectations, activities in the SA and SRM
	processes will be used to design, implement, and track corrective actions.
17	While still recognizing the legal rights and responsibilities of each player in the safety
	management equation, joint efforts of both can be more effective than separate actions
	of each party.

¹ Black's Law Dictionary, a common legal reference, defines "assurance" as "something that gives confidence." Using this definition, "safety assurance" refers to activities and processes that allow FAA and operators to gain confidence that safety objectives are being met.